Simulink® Design Verifier™
User's Guide

<

MATLAB&SIMULINK?

R2019a >) MathWorks’

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Design Verifier™ User's Guide
© COPYRIGHT 2007-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

Prover, Prover Technology, Prover Plug-In and the Prover logo are trademarks or registered
trademarks of Prover Technology AB in Sweden, the United States and in other countries.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

May 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015

March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 2007a+)
Revised for Version 1.1 (Release 2007Db)
Revised for Version 1.2 (Release 2008a)
Revised for Version 1.3 (Release 2008b)
Revised for Version 1.4 (Release 2009a)
Revised for Version 1.5 (Release 2009Db)
Revised for Version 1.6 (Release 2010a)
Revised for Version 1.7 (Release 2010Db)
Revised for Version 2.0 (Release 2011a)
Revised for Version 2.1 (Release 2011b)
Revised for Version 2.2 (Release 2012a)
Revised for Version 2.3 (Release 2012b)
Revised for Version 2.4 (Release 2013a)
Revised for Version 2.5 (Release 2013b)
Revised for Version 2.6 (Release 2014a)
Revised for Version 2.7 (Release 2014b)
Revised for Version 2.8 (Release 2015a)
Revised for Version 3.0 (Release 2015b)
Rereleased for Version 2.8.1 (Release
2015aSP1)

Revised for Version 3.1 (Release 2016a)
Revised for Version 3.2 (Release 2016b)
Revised for Version 3.3 (Release 2017a)
Revised for Version 3.4 (Release 2017Db)
Revised for Version 3.5 (Release 2018a)
Revised for Version 4.0 (Release 2018b)
Revised for Version 4.1 (Release 2019a)

Contents

Acknowledgments

Getting Started

1]

Simulink Design Verifier Product Description 1-2
Simulink Design Verifier Block Library 1-3
AnalyzeaModel e 1-4
About ThisExample 1-4
OpentheModel 1-4
Generate Test Casesoov vt 1-6
Combine Test Casescov vt 1-24
Generate Test Cases for a Subsystem 1-26
Analyze a Stateflow Atomic Subchart 1-28
Analyze an Atomic Subchart Using the Simulink Design Verifier
Software 1-28
Basic Workflow for Simulink Design Verifier 1-31

How the Simulink Design Verifier Software Works

2|

Analyze a Simple Model 2-2

vi

Contents

Model Blocks
Block Reduction
Inlined Parameters
Large Models i,

Handle Incompatibilities with Automatic Stubbing
What [s Automatic Stubbing?
How Automatic Stubbing Works
Analyze a Model Using Automatic Stubbing

Analyze Export-Function Models
Analyze an Export-Function Model with Function-Call

Subsystems

Limitations

Nonfinite Data

Approximations
Approximations During Model Analysis
Types of Approximationsccoiiinnnn.
Floating-Point to Rational Number Conversion
Linearization of Two-Dimensional Lookup Tables for Floating-

Point Data Types ... it
Approximation of One- and Two-Dimensional Lookup Tables for
Integer and Fixed-Point Data Types

While LOOPS . .. oo

Reporting Approximations Through Validation Results
Impact of Approximations on Objectives Status
Identifying the Effect of Approximations Through Validation

Results o

Logic Operations Short-Circuiting
Model Representation for Analysis
Reuse Model Representation for Analysis

Limitations

Extend Existing Test Cases by Reusing Model Representation

2-4

2-5

2-21
2-22
2-22
2-22
2-23
2-23

2-24
2-24

2-26
2-26

2-27
2-31
2-32

2-32
2-34

2-36

Configure Model Representation Options 2-43

Checking Compatibility with the Simulink Design
Verifier Software

3|

Check Model Compatibility 3-2
Run Compatibility Check 3-2
Compatibility Check Results 3-3

Supported and Unsupported Simulink Blocks in Simulink

Design Verifier 3-8
Support Limitations for Simulink Software Features 3-20
Support Limitations for Model Blocks 3-23
Support Limitations for Stateflow Software Features 3-25

ml Namespace Operator, ml Function, ml Expressions 3-25
CorCH+0peratorsccviiii it 3-25
CMathFunctions 3-25
Atomic Subcharts That Call Exported Graphical Functions
Outsidea Subchart 3-26
Atomic Subchart Input and Output Mapping 3-26
Recursion and Cyclic Behavior 3-27
CustomCorC++Codecoviiiinn... 3-29
Machine-Parented Data 3-29
Textual Functions with Literal String Arguments 3-29
Support Limitations for MATLAB for Code Generation 3-30
Unsupported MATLAB for Code Generation Features 3-30
Support Limitations for MATLAB for Code Generation Library
Functions 3-30

Support Limitations and Considerations for S-Functions and

C/C++Code 3-35
Enabling S-Functions in Simulink Design Verifier 3-35
Support Limitations for S-Functions and C/C++ Code 3-35
Considerations for Enabling S-Functions and C/C++ Code in

Simulink Design Verifier 3-36

viii

Contents

Source Code Protection 3-36

Working with Block Replacements

4

What Is Block Replacement? 4-2

Block Replacement Effects on Test Generation 4-3
Built-In Block Replacements 4-6
Template for Block Replacement Rules 4-8
Block Replacements for Unsupported Blocks 4-9

Specifying Parameter Configurations

S|

Parameter Constraint Values 5-2
Parameter Configuration for Analysis 5-2
Data Types in Parameter Configurations 5-3
Parameters in Variant Subsystems 5-4

Define Constraint Values for Parameters 5-5
Find Parameters and Autogenerate Constraints 5-6
Edit Parameter Constraints 5-9
Highlight Constrained Parameters in Model 5-10

Specify Parameter Constraint Values for Full Coverage 5-12
About This Example, 5-12
Construct Example Model 5-13
Parameterize Constant Block 5-14
Preload Workspace Variable 5-14
Autogenerate Parameter Constraint 5-15
Analyze Example Model 5-17
Simulate Test Cases 5-19

Store Parameter Constraints in MATLAB Code Files 5-24
Export Parameter Constraintsto File 5-24
Import Parameter Constraints from File 5-26

Define Constraint Values for Parameters in MATLAB Code Files

.. 5-27
Template Parameter Configuration File 5-27
Syntax in Parameter Configuration Files 5-27

Using Command Line Functions to Support Changing
Parameters it 5-32
Parameter Identification 5-46

Detecting Design Errors

6/

What Is Design Error Detection? 6-2
Derived Ranges in Design Error Detection 6-3
Run a Design Error Detection Analysis 6-4
Workflow for Detecting Design Errors 6-4
Understand the AnalysisResults 6-4
Review the Latest Analysis Results in the Model Explorer 6-7
Check For Design Errors using the Model Advisor 6-7
Dead Logic Detection 6-9
Detect Dead LogicOnly 6-9
Detect Dead and Active Logic 6-10
Run a Dead Logic Analysis and Review Results 6-10
Detect Dead Logic Caused by an Incorrect Value 6-14
Analyze the Fuel System Model 6-14
Review the Results and Trace to the Model 6-15
Investigate the Cause of the Dead Logic 6-16
Update the Input Constraint and Re-Analyze the Model 6-16
Model Objects That Receive Dead Logic Detection 6-17
Abs . 6-18

ix

Dead Zonet 6-18

Discrete-Time Integrator 6-19
Enabled Subsystem 6-19
Enabled and Triggered Subsystem 6-20
Fen . 6-20
For Iterator, For Iterator Subsystem 6-20
If, If Action Subsystem 6-21
Library-Linked Objects 6-21
Logical Operator 6-21
MATLAB Function i 6-21
MIinMax . ..ot 6-22
Model ... 6-22
Multiport Switch 6-22
RateLimiter 6-22
Relay 6-23
Saturation 6-23
Stateflow Charts 6-24
Switch 6-24
SwitchCase, SwitchCase Action Subsystem 6-24
Triggered Models 6-24
Triggered Subsystem 6-25
While Iterator, While Iterator Subsystem 6-25
Detect Integer Overflow and Division-by-Zero Errors 6-26
About This Example 6-26
AnalyzetheModel 6-26
Review the AnalysisResults 6-27
Check for Specified Minimum and Maximum Value Violations
.. 6-31
Limitations of Checking Specified Minimum and Maximum Value
Violations 6-31
About ThisExample 6-32
Create the Example Model 6-32
AnalyzetheModel 6-34
Review the AnalysisResults 6-34
Detect Out of Bound Array Access Errors 6-38
Design Error Detection for Out of Bound Array Access 6-38
Detect Out of Bound Array Access in Example Model 6-39
Limitations of Support for Out of Bound Array Access Design
Error Detection, 6-44

X Contents

Detect Non-Finite, NaN, and Subnormal Floating-Point Values

.. 6-45
Assumptions and Limitations 6-45

Run Design Error Detection Analysis to Detect Floating-Point
Errors 6-46
Design Error Detection 6-51
Design Error Detection for Out of Bound Array Access 6-53

Generating Test Cases

7

What Is Test Case Generation? 7-2
TestCase Blocks 7-2
Test Case Functions 7-2
Workflow for Test Case Generation 7-4
Generate Test Cases for Model Decision Coverage 7-6
Construct the Example Model 7-6
Check Compatibility of the Example Model 7-7
Configure Test Generation Options 7-8
Analyze the Example Model 7-9
Review AnalysisResults 7-9
Customize Test Generation 7-18
Reanalyze the Example Model 7-20
Analyze Contradictory Models 7-22
Use Test Generation Advisor to Identify Analyzable

Components i, 7-23
Test Generation AdviSOr 7-23
Test Generation Advisor Requirements 7-25
Identify Analyzable Components 7-25
Analyze and Generate Tests for Model Components 7-25
Manually Select Components for Testing 7-28
Generate Test Cases for Embedded Coder Generated Code .. 7-30

Generate Test Cases for Generated Code from the Block
Diagramttt e 7-30

xi

xii

Contents

Generate Test Cases for Generated Code by Using the Simulink

Design Verifier APT 7-31
Generate Test Cases for Generated Code from the Simulink Test
Test Managerty 7-31
Model Coverage Objectives for Test Generation 7-33
Decision 7-33
Conditiont 7-33
MCDC . . e 7-34
Enhanced MCDC s 7-34
Relational Boundary 7-34
Enhance Model Coverage of Older Release Models 7-36
Enhance Model Coverage by Generating Test Cases for Older
Release Model i, 7-37
Enhance Model Coverage by Using Generated Code from Older
Release i 7-41
Enhanced MCDC Coverage in Simulink Design Verifier 7-48
Use Model Coverage Objectives for Enhanced MCDC Coverage
.. 7-48
Author Custom Test Objectives for Enhanced MCDC Coverage
.. 7-49
Analyze a Model for Enhanced MCDC Analysis 7-51
Basic Workflow for Enhanced MCDC Analysis 7-55
Configure Advanced Options for Enhanced MCDC Analysis .. 7-57
Author Custom Test Objective Workflow 7-59
Steps for Authoring Custom Test Objectives 7-59
Analyze Custom Test Objectives in a Model for Enhanced MCDC
.. 7-61
Flip Flop Test Generation 7-68
Model Coverage Test Generation 7-69
Test Objective Block 7-70
Test Condition Block 7-71
Cruise Control Test Generation 7-72

Fuel Rate Controller Test Generation
Extend an Existing Test Suite
Defining and Extending Existing Tests Cases
Using Existing Coverage Data During Subsystem Analysis . .
Creating and Executing TestCases

Using Specified Input Minimum and Maximum Values as
Constraints

Configuring S-Function for Test Case Generation
Code Coverage Test Generation
Test Generation on Model with C Caller Block

Test Generation for Custom Code in a Stateflow Chart

7-74

7-76

7-83

7-91

7-98

7-110

7-112

7-116

7-120

7-122

Extending Existing Test Cases

8|

When to Extend Existing TestCases
Common Workflow for Extending Existing Test Cases

Extend Test Cases for Model with Temporal Logic
Create Starting TestCase
Log Starting Test Caseciiiiinon..
Extend Existing Test Casesccouiiinn...
Verify AnalysisResults

Extend Test Cases for Closed-Loop System
Log Starting TestCase
Extend Existing TestCasesc..unn...

Extend Test Cases for Modified Model
Create Starting TestCases,
Extend Existing TestCases o....

8-19
8-19
8-20

xiii

xiv

Achieving Test Cases for Missing Model Coverage

9

Generate Test Cases for Missing Coverage Data 9-2
Achieve Missing Coverage in Referenced Model 9-3
Programmatically Achieve Missing Coverage in Referenced
Model 9-3
Increase Coverage for Referenced Models in a Test Harness
... 9-6
Missing Coverage in Subsystems and Model Blocks 9-13
Achieve Missing Coverage in Closed-Loop Simulation Model
.. 9-14
Record Coverage Data forthe Model 9-14
Find Test Cases for Missing Coverage 9-15
Modified Condition and Decision Coverage in Simulink Design
Verifier e 9-18
MCDC Definitions for Simulink Coverage and Simulink Design
Verifier 9-18

Verifying Model Components

10|

What Is Component Verification? 10-2
Component Verification Approaches 10-2
Simulink Design Verifier Tools for Component Verification . . 10-2

Functions for Component Verification 10-4

Verify a Component for Code Generation 10-6
About the Example Model 10-6
Prepare the Component for Verification 10-8
Record Coverage for the Component 10-9
Use Simulink Design Verifier Software to Record Additional

COVETAgE . . vt 10-10
Combine the Harness Models 10-12

Contents

Execute the Component in Simulation Mode 10-13
Execute the Component in Software-in-the-Loop (SIL) Mode

Considering Specified Minimum and Maximum Values
for Inputs During Analysis

11|

Minimum and Maximum Input Constraints 11-2
Simulink Design Verifier Support for Specified Input Minimum
and Maximum Valuesc.ciiinnnn. 11-2
Limitations of Simulink Design Verifier Support for Specified
Minimum and Maximum Values 11-3

Specify Input Ranges on Simulink and Stateflow Elements

.. 11-4
Specify Input Ranges for Inport Blocks 11-4
Specify Input Ranges for Simulink.Signal Objects 11-5
Specify Input Ranges for Stateflow Data Objects 11-6
Specify Input Ranges for Subsystems 11-7
Specify Input Ranges for Global Data Stores 11-8
Specify Input Ranges for Bus Elements 11-9

Specify Input Ranges in sldvData Fields 11-11

Proving Properties of a Model

12

What Is Property Proving? 12-2
Proof Blocks 12-2
Proof Functions 12-2

Workflow for Proving Model Properties 12-4

Prove Propertiesina Model 12-5
About This Example 12-5
Construct Example Model 12-6

Check Compatibility of Example Model 12-7

Instrument Example Model 12-8
Configure Property-Proving Options 12-9
Analyze Example Model 12-10
Review AnalysisResults 12-10
Customize Example Proof 12-19
Reanalyze Example Model 12-20
Review Results of Second Analysis 12-20
Analyze Contradictory Models 12-23
Prove Properties in a Large Model 12-24
Prove System-Level Properties Using Verification Model . . 12-25
When to Use a Verification Model for Property Proving 12-25
AboutthisExample 12-25
Understand the Verification Model 12-25
Prove the Properties of the Design Model 12-26
Fix the Verification Model 12-27
Prove Properties in a Subsystem 12-30
Model Requirements 12-31
Basic Properties 12-31
Temporal Properties 12-33
Property Proving with an Invalid Property 12-37
Property Proving with Multiple Properties 12-38
Property Proving with an Assumption Block 12-39
Property Proving Workflow for Cruise Control 12-40
Property Proving Workflow for Fixed-Point Cruise Control
... 12-42
Property Proving Using MATLAB Function Block 12-44
Property Proving Using MATLAB Truth Table Block 12-46
Property Proving Workflow for Thrust Reverser 12-48
Debounce Temporal Properties 12-50

xvi Contents

Power Window Controller Temporal Properties 12-54

Reviewing the Results

13

Highlighted Results on the Model 13-2
Results Review with Model Highlighting 13-2
Simulink Design Verifier Results Inspector 13-2
Highlight Results on Model Automatically 13-2
Green Highlightingon Model 13-4
Red HighlightingonModel 13-5
Orange Highlightingon Model 13-5
Gray Highlightingon Model 13-8

Simulink Design Verifier Data Files 13-10
Data File Generation 13-10
Contents of sldvData Structure 13-10
Model Information FieldsinsldvData 13-11
Simulate Models with Data Files 13-17
Load Results from Data Files 13-17

Simulink Design Verifier Harness Models 13-18
Harness Model Generation 13-18
Create a HarnessModel 13-18
Contents of a HarnessModel 13-19
Configuration of the Harness Model 13-25
Simulate the Harness Model 13-26

Simulate Harness Model with Signal Editor Inputs Block .. 13-29

Export Test Cases to Simulink Test 13-35
Overall Workflow 13-35
Test Case Generation Example 13-35

Simulink Design Verifier Reports 13-38
Simulink Design Verifier Report Generation 13-38
Create AnalysisReports 13-38
FrontMatter 13-39
Summary Chapter 13-39
Analysis Information Chapter 13-40

xvii

xviii

Derived Ranges Chapter 13-44

Objectives Status Chapters 13-45
Model Items Chapter 13-58
Design Errors Chapter 13-59
Test Cases Chapter, 13-60
Properties Chapter0 13-65
Simulink Design Verifier Log Files 13-67
Review AnalysisResults 13-69
View Active Results 13-69
Load Previous Results 13-69
ExploreResults 13-70

Analyzing Large Models and Improving Performance

14

Contents

Sources of Model Complexity 14-2
Analyze a Large Model 14-3
Types of Large Model Problems 14-3
Summarize Model Hierarchy and Compatibility 14-4
Use the Default Parameter Values 14-4
Modify the Analysis Parameters 14-6
Use the Large Model Optimization 14-6
Stop the Analysis Before Completion 14-6
Increase Allocated Memory for Analysis Report Generation
.. 14-8
Manage Model Data to Simplify the Analysis 14-9
Simplify Data Typesot e 14-9
ConstrainData 14-9
Partition Model Inputs for Incremental Test Generation . . 14-12
Bottom-Up Approach to Model Analysis 14-14
Extract Subsystems for Analysis 14-15
Overview of Subsystem Extraction 14-15

sldvextract Function
Structure of the Extracted Model .

Analyze Subsystems That Read from Global Data Storage . .

Analyze Function-Call Subsystems

Logical Operations

Models with Large Verification State
Counters and Timers

Prove Properties in Large Models . .

Space

Find Property Violations While Designing Your Model
Combine Proving Properties and Finding Proof Violations . .

14-23

14-25
14-25
14-26

Simulink Design Verifier Configuration Parameters

15

Simulink Design Verifier Options . . .

Options in Configuration Parameters Dialog Box

Design Verification Options Objects

Command-Line Parameters for Design Verification Options

Design Verifier Pane
Design Verifier Pane Overview . . .
Mode

Maximum analysis time
Display unsatisfiable test objectives

Output folder

Make output file names unique by adding a suffix

Check Model Compatibility

Generate Tests/Detect Errors/Prove Properties

Rebuild model representation
Automatic stubbing of unsupported

blocks and functions . .

Run additional analysis to reduce instances of rational
approximation

Use specified input minimum and maximum values

Support S-Functions in the analysis

Additional options for S-Functions

xix

XX

Contents

Design Verifier Pane: Block Replacements
Block Replacements Pane Overview
Apply block replacements,
List of block replacementrules
File path of the output model

Design Verifier Pane: Parameters
Parameters Pane Overview
Enable parameter configuration
Use parametertable
Parameter configurationfile

Clear o

USE o oo e
Name e

Value . ..o

MaX . e

Design Verifier Pane: Test Generation
Test Generation Pane Overview
Test generationtarget
Model coverage objectives
Testconditions,
Testobjectives
Maximum testcasesteps,
Test suite optimization
Include relational boundary objectives
Floating point absolute tolerance
Floating point relative tolerance
Use strict propagation conditions
Extend existing testcases
Datafile e

Ignore objectives satisfied in existing coverage data

Coverage datafile
Browse...,

Ignore objectives based on filter .

Coverage filterfile
Browse...

Design Verifier Pane: Design Error Detection
Design Error Detection Pane Overview

Deadlogic
Identify active logic
Out of bound array access
Divisionby zero

Integer overflow

Non-finite and NaN floating-point values

Subnormal floating-point values . .

Specified minimum and maximum value violations

Design Verifier Pane: Property Proving

Property Proving Pane Overview .
Assertion blocks

Proof assumptions

Strategy

Maximum violation steps

Design Verifier Pane: Results
Results Pane Overview

Save test datatofile

Datafilename
Include expected output values . .

Randomize data that do not affect the outcome
Generate separate harness model after analysis

Harness model file name

Reference input model in generated harness

Harness source

Test File Name

Test Harness Name

Design Verifier Pane: Report
Report Pane Overview
Generate report of the results . . .

Generate additional report in PDF format

Report filename
Include screen shots of properties

xxi

Display Teport 15-80

Verification and Validation

16

Test Model Against Requirements and Report Results 16-2
Requirements - Test Traceability Overview 16-2
Display the Requirements and Test Case 16-3
Link RequirementstoTests 16-4
RuntheTest 16-5
Reportthe Results 16-6

Analyze a Model for Standards Compliance and Design Errors

.. 16-8
Standards and Analysis Overview 16-8
Check Model for Style Guideline Violations and Design Errors

.. 16-8

Perform Functional Testing and Analyze Test Coverage . . . 16-11

Incrementally Increase Test Coverage Using Test Case
Generation i i i 16-11

Analyze Code and Test Software-in-the-Loop 16-15
Code Analysis and Testing Software-in-the-Loop Overview . 16-15
Analyze Code for Defects, Metrics, and MISRA C:2012 16-15

Glossary

xxii Contents

Acknowledgments

The Simulink Design Verifier software uses Prover Plug-In® products from Prover®
Technology to generate test cases and prove model properties.

(=) civgged i

xxiii

Getting Started

* “Simulink Design Verifier Product Description” on page 1-2
* “Simulink Design Verifier Block Library” on page 1-3

* “Analyze a Model” on page 1-4

* “Generate Test Cases for a Subsystem” on page 1-26

* “Analyze a Stateflow Atomic Subchart” on page 1-28

» “Basic Workflow for Simulink Design Verifier” on page 1-31

1 Getting Started

Simulink Design Verifier Product Description

1-2

Identify design errors, prove requirements compliance, and generate tests

Simulink Design Verifier uses formal methods to identify hidden design errors in models.
It detects blocks in the model that result in integer overflow, dead logic, array access
violations, and division by zero. It can formally verify that the design meets functional
requirements. For each design error or requirements violation, it generates a simulation
test case for debugging.

Simulink Design Verifier generates test cases for model coverage and custom objectives
to extend existing requirements-based test cases. These test cases drive your model to
satisfy condition, decision, modified condition/decision (MCDC), and custom coverage
objectives. In addition to coverage objectives, you can specify custom test objectives to
automatically generate requirements-based test cases.

Support for industry standards is available through IEC Certification Kit (for IEC 61508
and ISO 26262) and DO Qualification Kit (for DO-178).

https://www.mathworks.com/discovery/formal-verification.html
https://www.mathworks.com/products/iec-61508.html
https://www.mathworks.com/products/do-178.html

Simulink Design Verifier Block Library

Simulink Design Verifier Block Library

To open the Simulink Design Verifier block library, at the MATLAB® command prompt,
type sldvlib.

©-© =V

Objectives and Constraints \erification Utilities
e
1 Example
xxxxxxxxxxxxxxxxxxxxxx - Froperties

Temporal Operators

The Simulink Design Verifier block library has three categories of blocks:

* Objectives and Constraints — Blocks that define custom objectives and constraints
* Temporal Operators — Blocks that define temporal properties on Boolean signals
» Verification Utilities — Miscellaneous verification utilities

The block library also has a sublibrary, Example Properties, that includes examples of how
to specify common properties in your model. You can easily adapt these examples for use
in your models.

1-3

1 Getting Started

Analyze a Model

1-4

In this section...

“About This Example” on page 1-4
“Open the Model” on page 1-4
“Generate Test Cases” on page 1-6
“Combine Test Cases” on page 1-24

About This Example

The following sections describe an example model, Cruise Control Test Generation. This
example illustrates how to use Simulink Design Verifier to generate test cases that
achieve complete model coverage. Through this example, you learn how to analyze
models with Simulink Design Verifier and interpret the results.

Open the Model

To open the Cruise Control Test Generation model, at the MATLAB prompt, enter:

sldvdemo cruise control

matlab:sldvdemo_cruise_control

Analyze a Model

Simulink Design Verifier
Cruise Control Test Generation

1} = enable
enable
.2} brake throt 1)
brake throt
3} et

set [0 100]

Actual speed

@7 —|speed
speed
.4} inc target —Il-

inc target
5 } | dec

dec

Controller

Run
{double-click)

Run Simulink Design Verifier

This example shows howto generate test cases that achieve complate model
coverage. By default, Simulink Design Verifier generates test cases that satisfy
objectives in the fewest steps. One ofthe test objectives forces the discrete integrator
inthe Pl controller to exceed its upper limit. When you run Simulink Design Verifier
without constraints, the limit is exceeded in a single step by forcing speed to be 500,
The constraint on speed limits the values in test cases between 0 and 100, This

forces the test casesto take several samples to exceed the integrator limit.
A AN N NNLA—I——

Togole Speed
Constraint
{tdouble-click)

View Options
{double-click)

Togaole Constraint View Simulin k Design Verifier Options

1-5

1 Getting Started

1-6

Generate Test Cases

“Run Analysis” on page 1-6

“Generate Analysis Results” on page 1-8

“Highlight Analysis Results on Model” on page 1-9

“Generate Detailed Analysis Report” on page 1-12

“Create Harness Model” on page 1-19

“Simulate Tests and Produce Model Coverage Report” on page 1-23

Run Analysis

To generate test cases for the Cruise Control Test Generation model, open the model
window and double-click the block labeled Run.

Simulink Design Verifier begins analyzing the model to generate test cases, and the
Simulink Design Verifier Results Summary window opens. The Results Summary window
displays a running log showing the progress of the analysis.

Analyze a Model

E nulink Design Verifier Results Summarny: sldvdemo_cruise_con oy

Progress |

Objectives processed 22/32
Satisfied 22
Unsatisfiable 1]
Elapsed time 0:13

13-Jul-2017 17:11:10

Checking compatibility for test generation: model
'sldvdemno_cruise_control'

Compiling model...done

Checking compatibility...done

13-Jul-2017 17:11:11
'sldvdemo_cruise_control' is compatible for test generation

with Simulink Design Verifier.

Generating tests using compatibility results from 13-Jul-2017
17:11:11...

SATISFIED hd

Disable Highlighting Stop

If you need to terminate an analysis while it is running, click Stop. The software asks if
you want to produce results. If you click Yes, the software creates a data file based on the
results achieved so far. The path name of the data file appears in the Results Summary

window.

The data file is a MAT-file that contains a structure named sldvData. This structure
stores the data that the software gathers and produces during the analysis.

1-7

1 Getting Started

For more information, see “Simulink Design Verifier Data Files” on page 13-10.

Generate Analysis Results

When Simulink Design Verifier completes its analysis of the sldvdemo cruise control
model, the Results Summary window displays several options:

* Highlight analysis results on model

* Generate detailed analysis report

* Create harness model

* Simulate tests and produce a model coverage report

Note When you analyze other models, depending on the results of the analysis, you may
see a subset of these four options.

1-8

Analyze a Model

Simulink Design Verifier Results Surmmary: sldvdemo_cruise_con..

Progress |

Objectives processed 32/32

Satisfied 32
Unsatisfiable 0
Elapsed time 0:17

Test generation completed normally.
32/32 objectives are satisfied.

Results:

* Highlight analysis results on model

= View tests in Simulation Data Inspector

= Detailed analysis report: (HTML) (FDF)

* Create harness model

* Export test cases to Simulink Test

* Simulate tests and produce a model coverage report

Data saved in: sldvdemo cruise control sldvdata.mat
in folder: H:\Documents\MATLAB\sldv_output
‘\sldvdemo_cruise control

View Log Close

The sections that follow describe these options in detail.

Highlight Analysis Results on Model

In the Simulink Design Verifier Results Summary window, if you click Highlight analysis
results on model, the software highlights objects in the model in three different colors,

depending on the analysis results:

1-9

1 Getting Started

1-10

* “Green: Objectives Satisfied” on page 1-10
* “Orange: Objectives Undecided” on page 1-11
* “Red: Objectives Unsatisfiable” on page 1-11

When you highlight the analysis results on a model, the Simulink Design Verifier Results
Inspector opens. When you click an object in the model that has analysis results, the
Results Inspector displays the results summary for that object.

Green: Objectives Satisfied

Green outline indicates that the analysis generated test cases for all the objectives for
that block. If the block is a subsystem or Stateflow® atomic subchart, the green outline
indicates that the analysis generated test cases for all objectives associated with the child
objects.

For example, in the sldvdemo cruise control model, the green outline shows that
the PI controller subsystem satisfied all test objectives. The Results Inspector lists the two
satisfied test objectives for the PI controller subsystem.

v

Il
—® error throt——

Pl Controller
'D'} Results: sldvdemo_cruise_control — O)4
~ A
Back to summary

sldvdemo_cruise_control/Controllerf/PI Controller

enable logical value F SATISFIED - View test case
enable logical value T SATISFIED - View test case

Analyze a Model

Orange: Objectives Undecided

Orange outline indicates that the analysis was not able to determine if an objective was
satisfiable or not. This situation might occur when:

* The analysis times out

* The software satisfies test objectives without generating test cases due to:

* Automatic stubbing errors
* Limitations of the analysis engine

In the following example, the analysis timed out before it could determine if one of the
objectives for the Discrete-Time Integrator block was satisfiable.

i

'PE Simulink Design Verifier Results Inspector EI@

#at - &2

Back to summary - Close results

sldvdemo_cruise_control/ Controller/PI Controller/Discrete-
Time Integrator

integration result <= lower limit F SATISFIED - View test case
integration result <= lower limit T

integration result == upper limit F SATISFIED - View test case
integration result == upper limit T SATISFIED - View test case

Red: Objectives Unsatisfiable

Red outline indicates that the analysis found some objectives for which it could not
generate test cases, most likely due to unreachable design elements in your model.

In the following example, input 2 always satisfies the criterion for the Switch block, so the
Switch block never passes through the value of input 3.

1-11

1 Getting Started

v

—
Y
L

v

—»—
Switch

P)

P& Simulink Design Verifier Results Inspector EI@
a4 ~ B

Back to summary - Close results
sldvdemo_cruise_control_red_switch /Controller/Switch
logical trigger input false (outputis UNSATISFIABLE
from 3rd input port)

logical trigger input true (outputis SATISFIED - View test case
from 1st input port)

Generate Detailed Analysis Report

In the Simulink Design Verifier Results Summary window, if you click Generate detailed
analysis report, the software saves and then opens a detailed report of the analysis. The
path to the report is:

<current folder>/sldv_output/...
sldvdemo cruise control/sldvdemo cruise control report.html

The HTML report includes the following chapters.

1-12

Analyze a Model

Table of Contents

1. Summary

2. Analysis Information

. Test Objectives Status
. Model Items

. Test Cases

L | [

For a description of each report chapter, see:

* “Summary” on page 1-13

* “Analysis Information” on page 1-14

* “Test Objectives Status” on page 1-15
* “Model Items” on page 1-17

* “Test Cases” on page 1-18

Summary

In the Table of Contents, click Summary to display the Summary chapter, which
includes the following information:

* Name of the model

* Mode of the analysis (test generation, property proving, design error detection)
» Status of the analysis

* Length of the analysis in seconds

* Number of objectives satisfied

1-13

1 Getting Started

Chapter 1. Summary

Analysis Information

Model: sldvdemo_cruise control
Mode: TestGeneration

Status: Completed normally
Analysis Time: 7s

Objectives Status

Number of Objectives: 34
Objectives Satisfied: 34

Analysis Information

In the Table of Contents, click Analysis Information to display information about the
analyzed model and the analysis options.

1-14

Analyze a Model

Chapter 2. Analysis Information

Table of Contents

Model Information
Analysis Options
Constraints
Approximations

Model Information

File:
Version:
Time Stamp:
Author:

Analysis Options

Mode:

Test Suite Optimization:
Maximum Testcase Steps:
Test Conditions:

Test Objectives:

Model Coverage Objectives:

Maximum Analysis Time:
Block Replacement:
Parameters Analysis:

Parameters Configuration File:

Save Data:
Save Harness:
Save Report:

Test Objectives Status

sldvdemo_cruise control
1.56

Wed Jul 18 10:45:08 2012
The MathWorks Inc.

TestGeneration
CombinedObjectives
500 time steps
UseLocalSettings
UseLocalSettings
MCDC

60s

off

on
sldv_params_template.m
on

off

off

In the Table of Contents, click Test Objectives Status to display a table of satisfied
objectives. The following figure shows a partial list of the objectives satisfied in the Cruise
Control Test Generation model.

1-15

1 Getting Started

Chapter 3. Test Objectives Status
Table of Contents

Obijectives Satisfied

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

Type Model Item Description Test Case
1 Decision Controller/Switch3 1og1ca] trigger input false (output is from 3rd 3
input port)
2 Decision Controller/Switch3 1oglca] trigger input true (output is from 1st 4
-— input port)
3 Decision Controller/Switch2 10g1ca] trigger input false (output is from 3rd 1
input port)
4 Decision Controller/Switch2 10g1ca] trigger input true (output is from 1st 8
input port)
5 Decision Controller/Switch1 1ogjca] trigger input false (output is from 3rd 5
input port)
6 Decision Controller/Switch1 1ogjca] trigger input true (output is from 1st 8
input port)
7 Condition Controller/Logical Operatorl Logic: input port 1 T 3
8 Condition Controller/Logical Operatorl Logic: input port 1 F 8
9 Condition Controller/Logical Operator2 Logic: input port 1 T 8
10 Condition Controller/Logical Operator2 Logic: input port 1 F 5
11 Condition Controller/Logical Operator2 Logic: input port 2 T 6
12 Condition Controller/Logical Operator2 Logic: input port 2 F 5
13 MCDC Controller/Logical Operator2 ESI%CI: ?ICDC expression for output with input 8

The Objectives Satisfied table lists the following information for the model:

* # — Objective number
* Type — Objective type

* Model Item — Element in the model for which the objective was tested. Click this link
to display the model with this element highlighted.

* Description — Description of the objective
+ Test Case — Test case that achieves the objective. Click this link for more information
about that test case.

In the row for objective 34, click the test case number (7) to display more information
about Test Case 7 in the report's Test Cases chapter.

1-16

Analyze a Model

Test Case 7

Summary

Length: 0.06 second (7 sample periods)
Objectives

Satisfied:

Objectives

Step |Time Model Item
7 0.06 Controller/PT Controller/Discrete-Time Integrator

Generated Input Data

. 0.01-
Time |0 0.05 0.06
Step |1 2-6 7
enable |1 1 1
brake |0 0 0
set 1 0 1
ine 1 1 -
dec 0 0 -
speed |97 0 0

Objectives
integration result >= upper limit T

In this example, Test Case 7 satisfies one objective, that the integration result be greater
than or equal to the upper limit T in the Discrete-Time Integrator block. The table lists the
values of the six signals from time 0 through time 0.06.

Model Items

In the Table of Contents, click Model Items to see detailed information about each item
in the model that defines coverage objectives. This table includes the status of the
objective at the end of the analysis. Click the links in the table for detailed information

about the satisfied objectives.

1-17

1 Getting Started

Chapter 4. Model Items

Table of Contents

Controller/Switch3

Controller/Switch2

Controller/Switchl

Controller/Logical Operatorl

Controller/Logical Operator2

Controller/Logical Operator

Controller/PI Controller

Controller/PI Controller/Discrete-Time Integrator

This section presents, for each object in the model defining coverage objectives, the list of objectives and their individual status at the end of the analysis. It
should match the coverage report obtained from running the generated test suite on the model, either from the harness model or by using the sldvruntests
command.

Controller/Switch3
View
s Test
H Type Description Status Case
logical trigger input
1 Decision false (output is from |Satisfied §
3rd input port)
logical trigger input true
2 Decision (output is from 1st Satisfied 4
input port)
Controller/Switch2
View
- Test
H Type Description Status Case
logical trigger input
3 Decision false (output is from Satisfied 1
3rd input port)
logical trigger input true
4 Decision (output is from 1st Satisfied §
input port)
Test Cases

In the Table of Contents, click Test Cases to display detailed information about each
generated test case, including:

* Length of time to execute the test case

* Number of objectives satisfied

» Detailed information about the satisfied objectives
* Input data

For an example, see the section for Test Case 7 in “Test Objectives Status” on page 1-15.

1-18

Analyze a Model

Create Harness Model

In the Simulink Design Verifier Results Summary window, if you click Create harness
model, the software creates and opens a harness model named
sldvdemo cruise control harness.

Test Case 1 enzble

g

Inputs

ooC

Test Case Explanation

The harness model contains the following blocks:

Size Type
enzble
braks
s=t
i
dec

» iy

throt

target
target

Test Unit {copied from sldvdeme_ocruise_control)

* The Test Case Explanation block is a DocBlock block that documents the generated
test cases. Double-click the Test Case Explanation block to view a description of each

test case for the objectives that the test case satisfies.

1-19

1 Getting Started

F Editor - S\sca_sldvisldvdemeo_cruise_control_harness_testcases.txt

ds (g g Wk msert . fx [v <@

New Open Save |1zl Compare = Comment . = EHGDTDV Breakpoints

- = - é?rim - Indent - | &f |55 4 Find ~ -

FILE EDIT NAVIGATE BREAKFOINTS

[sldvdemo_crui;e_control_harne;;_te;tc..‘ S

1 Te=st Case 1 (1 Cbkbjectiwves) -~
2 Parameter values: F
2

4 1. Controller/Switch2 - logical trigger input false (output is from 3rd input port) @ T=0.00

5

& Test Case 2 (3 Cbjectiwves)

7 Parameter values:

8

9 1. Controller/Logical Operator - Logic: input port 1 F @ T=0.00
10 2. Controller/Logical Operator - Logic: MCDC expression for output withl input port 1 F @ T=0.00
11 3. Controller/PI Controller - enable logical valus F § T=0.00
12
13 TIest Case 3 (3 Cbjectives)
14 Parameter values:
15 |
16 1. Controller/Logical Cperatorl - Logic: input port 1 T @ T=0.00 3
17 2. Controller/Logical Operator - Logic: input port 2 F @ T=0.00
18 3. Controller/Logical Operator - Logic: MCDC expression for output withl input port 2 F @ T=0.00
19
20 Test Case 4 (1 Cbjectives)
21 Parameter wvalues:
22
23 1. Controller/Switch3 - logical trigger input true (output is from 1st input port) & T=0.00
24
25 Test Case 5 (7 Objectives)
26 Parameter values:
27

=] 1. Controller/Switchl - logical trigger input false (output is from 3rd input port) @ T=0.00
23 2. Controller/Logical Operator2 - Logic: input port 1 F @ T=0.00 B
30 3. Controller/Logical Operator2 - Logic: input port 2 F @ T=0.00
=hl 4. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 1 F @ T=0.00
32 5. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 2 F @ T=0.00
33 6. Controller/Logical Operator - Logic: input port 3 F @ T=0.00
34 7. Controller/Logical Operator - Logic: MCDC expression for output with input port 3 F @ T=0.00
5
36 TIest Case 6 (2 Cbjectives)
37 Parameter values:
38
39 1. Controller/Logical Cperator2 - Logic: input port 2 T @ T=0.01
40 2. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 2 T @ T=0.01
41
42 Test Case 7 (1 Cbjectiwves)
43 Parameter values:
aa a2
Click and drag to move the document bar... Ln 25 Col 27 OVR

1-20

Analyze a Model

» The Test Unit block is a Subsystem block that contains a copy of the original model
that the software analyzed. Double-click the Test Unit block to view its contents and
confirm that it is a copy of the Cruise Control Test Generation model.

Note You can configure the harness model to reference the model that you are
analyzing using a Model block instead of using a subsystem. In the Configuration
Parameters dialog box, on the Design Verifier > Results pane, select Generate
separate harness model after analysis and Reference input model in generated
harness.

* The Inputs block is a Signal Builder block that contains the generated test case
signals. Double-click the Inputs block to open the Signal Builder dialog box and view
the eight test case signals.

* The Size-Type block is a subsystem that transmits signals from the Inputs block to the
Test Unit block. This block verifies that the size and data type of the signals are
consistent with the Test Unit block.

The Signal Builder dialog box contains eight test cases.
1 To view Test Case 7, from the Active Group list, select Test Case 7.
In Test Case 7 at 0.01 seconds:

* The enable and inc signals remain 1.

* The brake and dec signals remain 0.

* The set signal transitions from 1 to 0.

* The speed signal transitions from 100 to 0.

1-21

1 Getting Started

u Signal Builder (sldvdemo_cruise_contrel_harness/Inputs) *

File Edit Group Signal Help E
FEH {RE oo | T |EFRER » 0o | R E
Active Group; | Test Case 7 - @, E] E]
e VTTTTTTTTTTTT Coo Tt e TTTTTTTTTTTTTTT LTt e y
enable H : : | I . o
! i ! ! : ! i 1
| | | | | |
|?_"'"""'"'"."'""""""i"""'""'"'.'"'""""'"'."""'""""i"'""""""."""""""".
ot | | | | | |
1 i i i | i i |
............... L S ——
IS A A N AR O 4
b a a e .]
n s s s s ;
e frenrnnnnnes oo beoneenenens onmenennenes et EESESEE :
Ei‘:::::::::::::*':::::::::::::::i:::::::::::::::'*::::::::::::::i:::::::::::::::i:::::::::::::: _______________ I
Ui_ E E E : E E :
_ | i i | i i |
mfi o B Rl LR, EEEEEEEE LR L EEEEEl EEEEEEEEEEEEEEE.
ag ' ' ' 1 1 1
R oo eenenennnes eenneneinane s eenneneennn :
b a a : a : |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.0
Time (sec)
Lett Pormnt Right Paimt

brake {shown)

Name: enable T: set (shown)

= ine {shown)

Index: 1 - - dec {shown)
’ speed {shown) i

Click to select point or segment, Shift+click to add points

enable (#1}) [YMin ¥Max]

1-22

In the Signal Builder block, the signal group satisfies the test objectives described in
the Test Case Explanation block.

Analyze a Model

To confirm that Simulink Design Verifier achieved complete model coverage, simulate
the harness model using all the test cases. In the Signal Builder dialog box, click the

all
Run all and produce coverage button ﬂ

The Simulink software simulates all the test cases. The Simulink Coverage™ software
collects coverage data for the harness model and displays a coverage report. The
report summary shows that the sldvdemo cruise control harness model
achieves 100% coverage.

Summary

1. sldvdemo cruise control harness 8 100%

Model Hierarchy/Complexity:

.. Controller 7 100%
..... PI Controller 4 100%

D1
—
2 Test Unit (copied from sldvdemo cruise_control) 7 100% e 100% ——100% —-—
—
—

Simulate Tests and Produce Model Coverage Report

In the Simulink Design Verifier Results Summary window, if you click Simulate tests and
produce a model coverage report, the software simulates the model and produces a
coverage report for the sldvdemo cruise control model. The software stores the
report with the following name:

<current_folder>/sldv_output/sldvdemo_cruise_control/...

sldvdemo _cruise control report.html

When you click Run all and produce coverage to simulate tests in the harness model,
you may see the following differences between this coverage report and the report you
generated for the model itself:

The harness model coverage report might contain additional time steps. When you
collect coverage for the harness model, the model stop time equals the stop time for
the longest test case. As a result, you might achieve additional coverage when you
simulate the shorter test cases.

1-23

1 Getting Started

1-24

* The cyclomatic complexity coverage for the Test Unit subsystem in the harness model
might be different than the coverage for the model itself due to the structure of the
harness model.

Combine Test Cases

If you prefer to review results that are combined into a smaller number of test cases, set
the Test suite optimization parameter to LongTestcases. When you use the
LongTestcases optimization, the analysis generates fewer, but longer, test cases that
each satisfy multiple test objectives. This optimization creates a more efficient analysis
and results that are easier to review.

Open the sldvdemo cruise control model and rerun the analysis with the
LongTestcases optimization:

Select Analysis > Design Verifier > Options.

N

In the Configuration Parameters dialog box, in the Select tree on the left side, under
the Design Verifier category, select Test Generation.

Set the Test suite optimization parameter to LongTestcases.

Click Apply and OK to close the Configuration Parameters dialog box.

In the sldvdemo cruise control model, double-click the block labeled Run.
In the Results Summary window, click Create harness model.

S AW

In the harness model, the Signal Builder block and the Test Case Explanation block
now contain one longer test case instead of the eight shorter test cases created
earlier in “Generate Test Cases” on page 1-6.

Analyze a Model

F Editor - S\sca_sldvisldvdemo_cruise_control_harness_testcase_long.tet

EDTOR cossickearal (A 5] & & 0 0 o

':D:' = E [l Find Files mset L & [5] ~ |52 g
Mew Open Save (5 Come=re = || Camment & L ENGDTD' Breakpoints
- = - EPrim - Indent - | i |f 4 Find = -
FILE EDIT NAVIGATE BREAKFOINTS
[;Idvdemn_crui;e_(nntrnl_hame;;_te:tc... S
1 Te=st Case 1 (34 Cbjectives)
2 Parameter values:
3
4 1. Controller/Switch3 - logical trigger input false (output is from 3rd input port) @ T=0.00
5 2. Controller/Switch3 - logical trigger input true (output is from 1lst input port) @ T=0.02
[3. Controller/Switch2 - logical trigger input false (output iz from 3rd input port) @ T=0.03
7 4. Controller/Switch? - logical trigger input true (output is from 1st input port) @ T=0.00
8 5. Controller/Switchl - logical trigger input false (output is from 3rd input port) @ T=0.04
9 6. Controller/Switchl - logical trigger input true (output is from lst input port) @ T=0.00
10 7. Controller/Logical Operatorl - Logic: input port 1 T @ T=0.02
11 8. Controller/Logical Cperatorl - Logic: input port 1 F @ T=0.00
2 9. Controller/Logical Operator2 - Logic: imput port 1 T @ T=0.00
13 10. Controller/Logical Cperator2 - Logic: input port 1 F @ T=0.04
14 11. Controller/Logical Cperator? - Logic: input port 2 T @ T=0.07
15 12. Controller/Logical Cperator? - Logic: input port 2 F @ T=0.04
16 13. Controller/Logical Cperator2 - Logic: MCDC expression for output with input port 1 T @ T=0.00
17 14. Controller/Logical Cperator2 - Logic: MCDC expression for output with input port 2 T @ T=0.07
18 15. Controller/Logical Operator? - Logic: MCDC expression for output with input port 1 F @ T=0.04
1% 16. Controller/Logical Operator2 - Logic: MCDC expression for output with input port 2 F @ T=0.04
2 17. Controller/Logical Cperator - Logic: input port 1 T 8 T=0.00
21 18. Controller/Logical Operator - Logic: input port 1 F @ T=0.01
22 18. Controller/Logical Operator - Logic: input port 2 T @ T=0.00
23 20. Controller/Logical Cperator - Logic: input port 2 F § T=0.02
24 21. Controller/Logical Operator - Logic: input port 3 T @ T=0.00
25 22. Controller/Logical Operator - Logic: input port 3 F @ T=0.05
26 23. Controller/Logical Cperator - Logic: MCDC expression for output with input port 1 T @ T=0.00
27 24. Controller/Logical Operator - Logic: MCDC expression for output with input port 2 T @ T=0.00
28 25. Controller/Logical Operator - Logic: MCDC expression for output with input port 3 T @ T=0.00
29 26. Controller/Logical Cperator - Logic: MCDC expression for output with input port 1 F @ T=0.01
30 27. Controller/Logical Operator - Logic: MCDC expression for output with input port 2 F @ T=0.02
31 28. Controller/Logical Cperator - Logic: MCDC expression for output with input port 3 F @ T=0.05
2 28. Controller/PI Controller - enable logical walue F @ T=0.01
33 30. Controller/PI Controller - enable logical value T @ T=0.00
34 31. Controller/PI Controller/Discrete-Time Integrator - integration result <= lower limit F @ T=0.00
35 32. Controller/PI Controller/Discrete-Time Integrator - integration resmlt <= lower limit T @ T=0.14
36 33. Controller/PI Controller/Discrete-Time Integrator - integration result >= upper limitc F @ T=0.00
37 34. Controller/PI Controller/Discrete-Time Integrator - integration result >= upper limit T @ T=0.26
plain text file Ln Col 1 OVR

The analysis still satisfies all 34 objectives.

Click Run all and produce coverage to collect coverage.

1-25

1 Getting Started

Generate Test Cases for a Subsystem

1-26

You can analyze a subsystem within a model. This technique is good for large models,
where you want to review the analysis in smaller, manageable reports.

This example shows how to analyze the Controller subsystem in the
sldvdemo cruise control model.

1

Open the example model:

sldvdemo cruise control

Right-click the Controller subsystem, and select Design Verifier > Enable ‘Treat as
Atomic Unit’ to Analyze.

The Function Block Parameters dialog box for the Controller subsystem opens.
Select Treat as atomic unit.

An atomic subsystem executes as a unit relative to the parent model. Subsystem
block execution does not interleave with parent block execution. You can extract
atomic subsystems for use as standalone models.

You must set the Treat as atomic unit parameter to analyze a subsystem with
Simulink Design Verifier.

After you set the parameter, other parameters become available, but you can ignore
them.
Click OK to close the dialog box.

Select File > Save As and save the Cruise Control Test Generation model with a new
name.

To start the subsystem analysis and generate test cases, right-click the Controller
subsystem, and select Design Verifier > Generate Tests for Subsystem.

The Simulink Design Verifier software analyzes the subsystem. When the analysis is
complete, view the analysis results for the Controller subsystem by clicking one of
the following options:

* Highlight analysis results on model

* Generate detailed analysis report

* Create harness model

Generate Test Cases for a Subsystem

* Simulate tests and produce a model coverage report

Note After processing a certain number of objectives, if the analysis stops, or if the
analysis times out, you can use the Test Generation Advisor to better understand
which subsystems are causing the problem. For more information, see “Use Test
Generation Advisor to Identify Analyzable Components” on page 7-23.

Review the results of the subsystem analysis and compare them to the results of the
full-model analysis described in “Analyze a Model” on page 1-4:

* The subsystem analysis analyzes the Controller as a standalone model.

* The Controller subsystem contains all the test objectives in the Cruise Control
Test Generation model. Both analyses generate the same test cases.

1-27

1 Getting Started

Analyze a Stateflow Atomic Subchart

1-28

In a Stateflow chart, an atomic subchart is a graphical object that allows you to reuse the
same state or subchart across multiple charts and models. You can use Simulink Design
Verifier to analyze atomic subcharts individually. You do not have to analyze the chart that
contains the atomic subchart, or the model that contains the chart.

If you are having problems analyzing a large model, analyzing an atomic subchart in a
controlled environment is helpful. As described in “Bottom-Up Approach to Model
Analysis” on page 14-14, by analyzing atomic subcharts or other components in the
model hierarchy individually, you can analyze a model to:

* Solve problems that slow down or prevent test generation, property proving, or design
error detection.

* Analyze model components that are unreachable in the context of the container model
or chart.

Note For more information about atomic subcharts, see “Create Reusable
Subcomponents by Using Atomic Subcharts” (Stateflow).

Analyze an Atomic Subchart Using the Simulink Design
Verifier Software

The sf _atomic_sensor pair example model models a redundant sensor pair using
atomic subcharts. This example analyzes the Sensorl subchart in the
RedundantSensors chart.

1 Openthe sf atomic sensor pair example model:
sf atomic _sensor pair

This model demonstrates how to model a simple redundant sensor pair using atomic
subcharts.

2 Double-click the RedundantSensors chart to open it.

matlab:sf_atomic_sensor_pair

Analyze a Stateflow Atomic Subchart

ink Sensori

[Sensorl.inFailed()]

ink Sensor?

[SensorZ.inF ailed()]
O

Alarm
en, du: y =0;

This Stateflow chart has two atomic subcharts:

e Sensorl
e Sensor?2

To analyze the Sensorl subchart using Simulink Design Verifier, right-click the
subchart and select Design Verifier > Generate Tests for Subchart.

During the analysis, the software creates a Simulink model named Sensor1 that
contains the Sensorl subchart. The new model contains Inport and Outport blocks
that respectively correspond to the data objects u and y in the subchart.

1» | Il Ot 1 1)

Sensor

1-29

1 Getting Started

The software saves the new model and other files generated by the analysis in:

<current folder>/sldv_output/Sensorl
4 When the analysis is complete, view the analysis results for the Sensorl subchart by
clicking one of the following options:
+ Highlight analysis results on model
* Generate detailed analysis report
* Create harness model
* Simulate tests and produce a model coverage report

1-30

Basic Workflow for Simulink Design Verifier

Basic Workflow for Simulink Design Verifier

The basic workflow for analyzing your model is described in the following steps, with links

to related documentation.

Step |Action See...

1 Check the compatibility of your model. “Check Model Compatibility” on page 3-2

2 If you want to work around compatibility |¢ “What Is Block Replacement?” on page 4-
limitations in your model or customize 2
model elements for analysis, you can use |, “Parameter Constraint Values” on page 5-
Simulink Design Verifier block 2
replacement rules. If you want to generate
additional values for parameters in your
model during analysis, use Simulink
Design Verifier parameter configurations.

3 Set Simulink Design Verifier options. “Simulink Design Verifier Options” on page 15-

2

4 If you plan to generate test cases or prove |¢ “What Is Design Error Detection?” on page
properties in your model, first run design 6-2
error detection for integer overflow and |, “petect Integer Overflow and Division-by-
division by zero. Zero Errors” on page 6-26

5 Analyze your model to: * “Run a Design Error Detection Analysis” on

* Detect design errors
* Generate test cases
* Prove properties

page 6-4

* “Workflow for Test Case Generation” on
page 7-4

* “Workflow for Proving Model Properties”
on page 12-4

Generate the results.

“Generate Analysis Results” on page 1-8

Interpret the results.

“Results Interpretation and Use”

1-31

How the Simulink Design Verifier
Software Works

* “Analyze a Simple Model” on page 2-2

* “Model Blocks” on page 2-4

* “Block Reduction” on page 2-5

* “Inlined Parameters” on page 2-6

* “Large Models” on page 2-7

+ “Handle Incompatibilities with Automatic Stubbing” on page 2-8

* “Analyze Export-Function Models” on page 2-15

* “Nonfinite Data” on page 2-21

* “Approximations” on page 2-22

* “Reporting Approximations Through Validation Results” on page 2-26
* “Logic Operations Short-Circuiting” on page 2-31

* “Model Representation for Analysis” on page 2-32

+ “Extend Existing Test Cases by Reusing Model Representation” on page 2-36
* “Configure Model Representation Options” on page 2-43

2 How the Simulink Design Verifier Software Works

Analyze a Simple Model

AND ..@

Yy

Logical out
L1 3} = Oper ator 1
HOR >
in L v l—_l
Logical Memory
Dperator

This simple model includes two Logical Operator blocks and a Memory block. The
persistent information in this model is limited to the Boolean value of the Memory block.
The input to the model is a single Boolean value. The following table describes the
complete behavior of the model, including the behavior that results from an arbitrarily
long sequence of inputs.

|Input Memory Value |Output of XOR Block = |Output of AND Block
Next Memory Value

1 false false false false

2 true false true false

3 false true true false

4 true true false true

The test objective is to generate test cases that result in a true output. A true output
results when the input is true, and the output of the Memory block is true. Test case
generation follows a path to reach this condition, which depends on the initial model
conditions:

» If the initial memory value is true, the test case is a single time step where the input
is true.
+ If the initial memory value is false, the test case is two time steps:
1 The input value is true and the memory value is false (row 2). Thus, the output of
the XOR block is true, making the memory value true.

2 Now that the input value and memory value are both true (row 4), the output is
true, and the analysis achieves the test objective.

2-2

Analyze a Simple Model

An infinite number of test cases can cause the output to be true, and regardless of the
state value, the output can be held false for an arbitrary time before making it true. When
Simulink Design Verifier searches, it returns the first test case it encounters that satisfies
the objective. This case is invariably the simulation with the fewest time steps. Sometimes
you may find this result undesirable because it is unrealistic or does not satisfy some
other test requirement.

The same basic principles from this example apply to property proving and test case
generation. During test case generation, option parameters explicitly specify the search
criteria. For example, you can specify that Simulink Design Verifier find paths for all block
outputs or find only those paths that cause the block output to be true.

During a property proving analysis, you specify a functional requirement, or property, that
you want Simulink Design Verifier to prove, for example, that the output is always true. If
the search completes without finding a path that violates the property, the property is
proven. If the software finds a path where the output is false, it creates a counterexample
that causes the output to be false.

During an error detection analysis, Simulink Design Verifier identifies objectives where
data overflow or division-by-zero errors can and cannot occur. The analysis creates test
cases that demonstrate how the errors can occur.

2-3

2 How the Simulink Design Verifier Software Works

Model Blocks

2-4

If your model contains Model blocks that reference external models, test creation occurs
for the top-level model, considering each referenced model in its execution context.

If multiple Model blocks reference the same model, generated tests attempt to satisfy test
objectives for each instance of the referenced model in its individual context in the top-
level model. If you have three Model blocks that reference a certain model, the analysis
produces results for all three instances.

If you collect coverage using the generated test cases, the cumulative coverage reflects
the multiple instances of the same referenced model. The simulation produces one set of
coverage results for each referenced model; if you have three Model blocks that reference
a certain model, the simulation produces one set of results for that referenced model.

For example, consider a top-level model with three Model blocks referencing the same
model. The referenced model has three test objectives. Analyzing the top-level model
produces nine test objectives. If you simulate the model with the nine test cases, the
coverage results for that referenced model specify three test objectives.

Block Reduction

Block Reduction

Block reduction achieves faster execution during model simulation and in generated code.
When block reduction is enabled, certain block groups can be collapsed into a single
block, or even removed entirely.

With Simulink Design Verifier, block reduction happens automatically, and blocks in
unused code paths are eliminated from the model. Simulink Design Verifier results do not
include test objectives for blocks that have been reduced.

Consider the Switch block in the following model.

In1 4\
; | D

|l
Ot

Cor—

Switch

For this Switch block, the control input is always 0. If the Criteria for passing first
input block parameter is u2 ~= 0, the Switch block always passes the third input
through to the output port. When you analyze this model, Simulink Design Verifier
removes the Switch block from the model and does not report any test objectives for the
Switch block.

For more information about block reduction, see the description of the “Block reduction”
(Simulink) parameter.

2-5

2 How the Simulink Design Verifier Software Works

Inlined Parameters

2-6

Setting Default parameter behavior to Inlined on the Optimization pane of the
Configuration Parameters dialog box optimizes Simulink models by transforming tunable
parameters into constant values. For example, suppose you have a Gain block whose Gain
parameter is a, where a is defined in the model workspace. During code generation,
Simulink converts that Gain parameter to a constant value, as defined in the workspace.

When Simulink Design Verifier translates a model, it transforms all tunable parameters in
the model into constant values, even if you set Default parameter behavior to
Inlined.

To tune parameters for an analysis, define parameter values in a parameter configuration
file and specify that file in the Configuration Parameters > Design Verifier >
Parameters pane to apply those parameter values during the analysis. For example, to
constrain the values of a Gain parameter a to integer values from 4 to 10, in the
parameter configuration file, specify the following:

params.a = int8([4 10]);
The analysis generates the specified values and returns results for those values.

For detailed information about how to specify parameters during a Simulink Design
Verifier analysis, see “Define Constraint Values for Parameters” on page 5-5.

Large Models

Large Models

In larger, more complicated models, Simulink Design Verifier uses mathematical
techniques to simplify the analysis:

+ It identifies portions of the model that do not affect the desired objectives.
» It discovers relationships within the model that reduce the complexity of the search.
* It reuses intermediate results from one objective to another.

In this way, the problem is reduced to a search though the logical values that describe
your model.

For detailed information about analyzing large models, see “Analyze a Large Model” on
page 14-3.

2-7

2 How the Simulink Design Verifier Software Works

Handle Incompatibilities with Automatic Stubbing

2-8

In this section...

“What Is Automatic Stubbing?” on page 2-8
“How Automatic Stubbing Works” on page 2-8

“Analyze a Model Using Automatic Stubbing” on page 2-10

What Is Automatic Stubbing?

Automatic stubbing lets you analyze a model that contains objects that Simulink Design
Verifier does not support.

When you enable the automatic stubbing option (it is enabled by default), the software
considers only the interface of the unsupported objects, not their actual behavior. This
technique allows the software to complete the analysis. However, the analysis may
achieve only partial results if any unsupported model element affects the simulation
outcome.

How Automatic Stubbing Works

If you enable automatic stubbing, when the Simulink Design Verifier analysis comes to an
unsupported block, the software “stubs” that block. The analysis ignores the behavior of
the block, and as a result, the block output can take any value.

Stub Trigonometric Function Block

The Simulink Design Verifier software does not support Trigonometric Function blocks
when the Function parameter is set to acos, such as the one in the following graphic.

h

L1 3} | 3oos - |:|
out_signal

n_signal
In1 =8

BCO5 Soope

When stubbing this block during analysis, out signal can take any value, with the
following results.

Handle Incompatibilities with Automatic Stubbing

Analysis Model Result of Stubbing out_signal

Design error detection » If a design-error objective that depends on out signal
is proven valid, that objective is valid for all simulations.
In this case, the stubbing did not affect the results of the
analysis.

» If a design-error objective that depends on out signal
is falsified, the analysis cannot create a test case. The
analysis cannot determine which input to the stubbed
block produces the output that falsifies the objective.

Test case generation + If a test objective that depends on the value of

out signal is satisfied, the analysis cannot create a test
case. The analysis cannot determine which input to the
stubbed block produces the output that satisfies the
objective.

» If a test objective that depends on the value of
out signal is unsatisfiable, there is no simulation that
can satisfy that objective. In this case, the stubbing did
not affect the results of the analysis.

Property proving » If a proof objective that depends on out signal is
proven valid, that objective is valid for all simulations. In
this case, the stubbing did not affect the results of the
analysis.

» If a proof objective that depends on out signal is
falsified, the analysis cannot create a counterexample.
The analysis cannot determine which input to the stubbed
block produces the output that falsifies the objective.

Stub S-Function Block Containing Function-Call Triggers

The Simulink example model sfcndemo sfun_ fcncall has an S-Function block. The S-
function sfun_fcncall triggers the execution of the function-call subsystems f1 subsys1
and f2 subsys2 on the first and second elements of the first output port.

2-9

matlab:sfcndemo_sfun_fcncall

2 How the Simulink Design Verifier Software Works

[T

Constant

2-10

- v
Sum sfun_fenecall 10
! - Diemice 1 Qut ;@

z Functicn call Ot
Unit Drelay S5-Function = f1 subsys1 Ot

0
Out v | |

i
f2 subsys2

Scope

matlabrootitoolbox'simulink'simdemas'simfeatures'srcisfun_fencall .o .

If you do not enable support for an S-function in Simulink Design Verifier and automatic
stubbing is enabled, the analysis ignores the behavior of the S-function. As a result, the
code that triggers the two function-call subsystems is ignored, resulting in two
unsatisfiable objectives. Since the function calls are ignored, the contents of those
subsystems are effectively eliminated from the analysis.

To enable support for an S-function in Simulink Design Verifier, see “Support Limitations
and Considerations for S-Functions and C/C++ Code” on page 3-35

Analyze a Model Using Automatic Stubbing

This section describes a workflow for using automatic stubbing, with a simple Simulink
model as an example.

* “Check Model Compatibility” on page 2-11

* “Turn On Automatic Stubbing” on page 2-13

* “Review Results” on page 2-13

* “Achieve Complete Results” on page 2-14

The following model contains a Discrete State-Space block, which is not compatible with
Simulink Design Verifier.

Handle Incompatibilities with Automatic Stubbing

Y

yinFECx{nj+Duin) [
@ #n+1 =Axn+Buln) % o @
In - Outt
Disrete State-Space Saturation

Check Model Compatibility

From the Simulink Editor, there are two ways to check whether a model is compatible
with Simulink Design Verifier:

* Run the Simulink Design Verifier compatibility check by selecting Analysis > Design
Verifier > Check Compatibility > Model.

Simulink Design Verifier Results Surmmany: ex_auto_stub >

21-Mov-2018 17:38:12

Checking compatibility for test generation: model 'ex_auto_stub'
Compiling model...done

Building model representation...done

21-Mov-2018 17:38:21
'ex_auto_stub' is for test generation with Simulink Design

Verifier.

The model can be analyzed by Simulink Design Verifier.

It contains unsupported elements that will be stubbed out during analysis. The results
of the analysis might be incomplete.

See documentation.

Save Log Generate Tests Close

» Select the analysis that you want:

2-11

2 How the Simulink Design Verifier Software Works

* Analysis > Design Verifier > Detect Design Errors > Model

* Analysis > Design Verifier > Generate Tests > Model
* Analysis > Design Verifier > Prove Properties > Model
The software first checks the compatibility of the model. If the model itself is

incompatible, for example, if it uses a variable-step solver, the analysis cannot
continue.

If it finds incompatible elements in the model, the software analyzes the model and, by
default, stubs out the incompatible elements. The Diagnostic Viewer also opens, listing
the incompatibilities.

& Diagnostic Viewer E\@

A ¢ 2|0 | @
ex_auto_stubbi...

- {'a SLDV Compatibility Analysis & 2 @
3:20:09 PM 1210/2013 Elapsed:7 sec

/My Simulink Design Verifier has only partial support for some elements of the model:
'ex_auto_stubbing' is partially compatible with Simulink Design Verifier.

The model can be analyzed by Simulink Design Verifier.

It contains unsupported elements that will be stubbed out during analysis. The results of
the analysis might be incomplete.

See documentation.

Component: sldv | Category: Design Verifier compatibility VWarning

/b Block 'ex_auto_stubbing/Discrete State-Space' is of type DiscreteStateSpace. Simulink Design:
Verifier does not support blocks of this type.]
See documentaticn.

Component: sldv | Category: Design Verifier compatibility VWarning

Note For more information, see “View Diagnostics” (Simulink).

2-12

Handle Incompatibilities with Automatic Stubbing

Turn On Automatic Stubbing

Automatic stubbing is enabled by default. To change the automatic stubbing setting, in
the Configuration Parameters dialog box, on the main Design Verifier pane, select
Automatic stubbing of unsupported block and functions. When you run the analysis,
the software tells you that stubbing is turned on and the analysis continues.

Review Results

If you run an analysis with automatic stubbing enabled, make sure to review the results.
In this report, generated after a test case generation analysis, you see a table of
unsupported blocks that the software encountered.

Unsupported Blocks

The following blocks are not supported by Simulink Design Verifier. They were abstracted during the
analysis. This can lead Simulink Design Verifier to produce only partial results for parts of the model that
depends on the output values of these blocks.

Block Type
Discrete State-Space DiscreteStateSpace

The generated analysis report for the example model shows that the objectives are
undecided because of stubbing. The software cannot generate test cases because it does
not understand the operation of the Discrete State-Space block.

Objectives Undecided Due to Stubbing

Simulink Design Verifier was not able to decide these objectives due to stubbing.

Type Model Item Description Analysis Time
(sec)

2 Decision Saturation input > lower limit F 12

3 Decision Saturation input > lower limit T 12

4 Decision Saturation input >= upper limit F 12

5 Decision Saturation input >= upper limit T 12

2-13

2 How the Simulink Design Verifier Software Works

Achieve Complete Results
If your analysis does not achieve complete results because of the stubbing, you can define

custom block replacements to give a more precise definition of the unsupported blocks.
For more information, follow the steps in “Block Replacements for Unsupported Blocks”.

2-14

Analyze Export-Function Models

Analyze Export-Function Models

Simulink Design Verifier supports design error detection, test generation, and property
proving for export-function models. The software creates schedulers that invoke the
export-function models, and then performs the analysis on the scheduler model. You can
analyze export-function models with periodic and aperiodic function-call groups. The
scheduler invokes the function calls based on the sample times and priorities set in the
top model. For more information, see “Export-Function Models” (Simulink).

Analyze an Export-Function Model with Function-Call
Subsystems

When you invoke Simulink Design Verifier analysis on a model that consists of export-
function models, the software creates a scheduler model and then performs the analysis.
By default, the scheduler model that the software creates is saved in this location
<current folder>\sldv_output\<model name>

\<model name> SldvScheduler.slx

This example shows how to analyze an AUTOSAR example model
sldvExportFunction autosar multirunnables that consists of periodic function-
call subsystems.

1 Add the example folder to the search path.

addpath(fullfile(docroot, 'toolbox"', 'sldv', 'examples'))
2 Openthe sldvExportFunction autosar multirunnables model.

open_system('sldvExportFunction autosar multirunnables');

3 To run the test generation analysis, click Analysis > Design Verifier > Generate
Tests > Model.

The Results Summary window indicates that a scheduler model

sldvExportFunction autosar multirunnables SldvScheduler.slx was
created. You can also generate a scheduler model by using sldvextract.

2-15

2 How the Simulink Design Verifier Software Works

2-16

Simulink Design Verifier Results Summary: sldvExportFunction_autosar_multirunnables_Sld...

Progress

Objectives processed of7
Satisfied 0
Unsatisfiable 0
Elapsed time 0:01

Creating a new model from the contents of Export Function model
"sldvExportFunction_autosar_multirunnables”.

Mew Model File:H:\Documents\MATLAB\sldv_output
\sldvExportFunction_autosar_multirunnables
\sldvExportFunction_autosar_multirunnables_SldvScheduler.slx

21-Nov-2018 17:42:57 l}
Preprocessing model...done

Checking compatibility for test generation: model
'sldvExportFunction_autosar_multirunnables'
Compiling model...done

Building model representation...done

21-Nov-2018 17:42:46

'sldvExportFunction_autosar_multirunnables_SldvSchedule' is compatible for test
generation with Simulink Design Verifier.

Generating tests using model representation from 21-Mov-2018 17:42:46...

L4

]

Analyze Export-Function Models

sldvExporiFunction_aut]

Runnablel PPort DET f— >
Cor— PPor_DET

RPort_DE1 Runnable2

PPort_DE2 b
Runnabled =
(2)— PR e

N

b

L

RPort_DE1_ErrorStatus) FFort_DE1
PPort_DE3 pl—»(3)
=
RFort DE1_ErorStatus FPor_DE3
RPort_DEZ RPort DE2 PPort DE4
o PPort_DE4
Signal spec]
and routing Signal spec
and routing
4
Fun

_SldvExportFenScheduler

The scheduler model consists of a MATLAB function block
_SldvExportFcnScheduler. The function calls are called periodically as the model
consists of periodic function-call subsystem.

The MATLAB code specifies the order in which the periodic function-call executes.
The Runnablel and Runnable2 executes first because the time period is 1 for both
of them. After 10 time steps, the Runnable3 executes.

2-17

2 How the Simulink Design Verifier Software Works

| _SldvExportFcnScheduler = | +
Ik &uncticn Run ()
"4 Sample Time Legend - (] x = persistent t:

g = if isempty(t)
sldvExportFunction_autosar_multirunnables =l © = int32(0):
Color Annotation Description Value 6 end

- FO Exported Discrete 1 (period) T

- El Exported Discrete 1 (period) : il Sounauied the

- F2 Exported Discrete 10 {period) 10 = RunnableZ ()
11

- Sonstant ok 12 - if mod(t, int32(10)) == 0
13 — Runnable3() ;
14 end
15
16 — t =t + int32(1);
17
18 end

If the model consists of aperiodic function-call subsystems, the scheduler consists of
an additional inport AsyncCallCount. The value of AsyncCallCount indicates
whether to invoke the function-call or not in a time step.

For example, if the Runnablel is an aperiodic function-call subsystem, the scheduler
consists of AsyncCallCount inport to invoke the scheduler. The Sample Time
Legend and the scheduler model for the aperiodic function-call is shown in the
graphic.

2-18

Analyze Export-Function Models

i". Sample Time Legend

sldvExportFunction_autosar_multirunnables

Inf

Constant

Color Annotation Description Value
- F1 Exported Discrele 1 (period)
- F2 Exported Discrete 10 (period)
E FO Exported Inherit Runnablet

Inf

RPot_DE1

RPort_DE1_ErmorStatus

-~ --=-=-----= Runnable2

---==-=-=-=-- " Runnabled

RPort_DE2

AsyncCallCount

Signal spec.
and routing

/sldvExpovﬁunctlonjutnsa M
------ P Runnable1
PPort_DE1 —@
<
PPort_DE1
PPort_DE2 |—
FPon_DE2
RPort_DE1
PPort_DE3 F— » 3)
PPort_DE3
RPort_DE1_ErrorStatus
PPort DE4 F— > 2 ED!
|RPart_DE2 PPort_DE4
AN -
Signal speac.
and routing
>)
Run
=t send_lcn:!i
_SldvExportFenScheduler

After the test generation analysis, in the summary window, you see the results that

7/7 objectives are Satisfied.

To generate a coverage report by simulating the test cases, in the Results Summary
window, click Simulate tests and produce a model coverage report.

The software simulates all the test cases, collects model coverage information, and

displays a coverage report.

To view the detailed analysis report, click HTML in the Results Summary window.

The Schedule for Export Function Analysis section in the Analysis Information
chapter lists the schedule for invoking the export-functions.

2-19

2 How the Simulink Design Verifi